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Abstract— David and Lang developed a mathematical model 

(SIR) i.e Susceptible-Infective-Recovered, for the spread of 

infectious in a given population over a time. The model gives a 

reasonable and sound results. However, some more realistic 

factors have not been accounted for in their model. These 

realistic assumptions will give better understanding of the 

modelling epidemics if included. Therefore, this paper is 

proposed to include some of these assumptions to improve the 

SIR model. We provide a number of contributions by 

incorporating the assumptions to enhance the analysis of the 

spread of diseases under different conditions. We have classified 

these conditions into four and provide experiments to each of the 

condition. We further provide a numerical scheme for the 

modified model and simulated the scheme using Visual Basic 

(VB) to test the model’s accuracy. The results show that the 

modified model proved to be more efficient than the existing SIR 

model. However, due to the inclusion of new assumptions to the 

existing model, the modified model shows faster decrease in 

infected population and high recovery rate than the existing SIR 

model. Moreover, we also investigate the reproductive ration, 

stability analysis, equilibrium points of the model, the Jacobean 

and the eigenvalues of the model.  

 
Index Terms— Mathematical model, SIR model, 

Epidemiology, endemic 

I. INTRODUCTION 

  Infectious diseases are those diseases that can be transmitted 

from person to person or from organism to organism and are 

caused by microbial agents. Examples of such these include 

common cold, cholera, chicken pox etc.  However, when a 

disease spreads in a given population, it splits the population 

into three classes (Martcheva, 2015). The class of individuals 

who are healthy but can contract the disease (susceptible-S), 

the class of individuals who have contracted the disease and 

are now sick (infected-I). However, it is assumed that the 

infected individuals are also infectious, and the last class of 

individuals is those who have recovered and cannot contract 

the disease again (recovered-R). The number of individuals in 

each of these classes changes with time. That’s they are 

functions of time t and the total population size (N) is the sum 

of the sizes of these three classes: 

  

 The extent to which a disease exists or spreads in a given 

population depends on the degree and frequency of contact 

between susceptible individuals and disease agents (Lucas 

and Gilles, 1982).The impact of infectious disease on human  
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and animals is enormous both in terms of suffering, social and 

economic consequences. Mathematical modeling is an 

essential tool in studying a diverse range of such diseases.  

In fact, the threat of infectious diseases seems to have 

replaced nuclear war in in this generation (Bryan, Stefan and 

Mark, 2005). 

When new diseases enter new population, we begin to 

envisage different kinds of outcomes such as; the disease 

could quickly die out, it could remain in the population more 

or less stable level, perhaps; “settling down” after a major 

outbreak (i.e become endemic), it could circle in incidence, 

causing periodic epidemic or epidemic could come and go at 

more or less intervals, perhaps exhibiting “chaotic” behavior. 

Mathematical models may give us real insight on such 

outcome (Epidemiology sample activity, 2003). The basic 

aims in studying the spread of infectious diseases in time and 

space is to gain a better understanding of the transmission 

mechanism and those features that are most essential in their 

spread, so as to enable prediction to be made, determined and 

evaluation control strategies (Bryan, Stefan and Mark 2005).  

Recently, mathematical modeling has emerged as a key tool in 

the studying diversity and control of infectious diseases, 

allowing virtual epidemics to be run, testing the effects of 

different assumptions or possible interventions (Henry, 

2006). This paper is to provide remedy for some of the 

deficiencies in then work by David and Lang (2001), by 

incorporating some more realistic assumptions so as to 

develop a better mathematical model of the dynamic of 

infectious disease and compare between existing model and 

the modified model.  

In this paper, we provide a number of contributions to the 

understanding of the role interaction and economic activity in 

the spread of diseases. The paper improves on the literature in 

epidemiology, which has developed models of disease 

diffusions dating back to Kermack and McKendrick (1927) 

by providing some factors that are more realistic factors that 

not being accounted for in the SIR model.  

II. STATEMENT OF THE PROBLEM 

David and Lang (2001) developed a mathematical model 

(SIR) i.e Susceptible-Infective-Recovered for the spread of 

infectious in a given population over a time. However, there 

are some realistic factors that not being accounted for in this 

model and this paper is proposed to address some of these 

factors. These factors include: - 

 The effects of birth and death due to other causes were not 

taken into consideration. 

 The infected individuals that die due to the disease were not 

considered 

 The general health and nutrition status of the populations, 

which may have a positive effect on the likelihood of 

epidemic occurring, were not considered. 
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III. LITERATURE REVIEW 

Infection diseases such as malaria, aids and cholera continue 

to claim millions of lives around world (Busenberg & Cooke, 

1993). However, global eradication programs of infection 

diseases have been implemented for many years with 

considerable success (Howard Weiss,2013). He further 

illustrates how the model helps in understanding a theoretical 

analysis for public health interventions.  

Application of mathematical modeling to the spread of 

epidemic has a long history and was initiated by Daniel 

Bernoulli who worked on the effects of cow-pox inoculation 

on the spread of small pox in 1760 (keeling, Woolhouse, 

many Davies and Greenfell 2003). Diseases are ubiquitous 

part of human life. Many, such as the common cold have 

minor symptoms and are purely an annoyance; but others such 

as Ebola or aids fill us with dread. From prehistory to the 

present day, diseases have a source of fear and superstition. 

Over past one hundred years, mathematics has been used to 

understand and predict the spread of disease, relating 

important public health question to basic infection parameters 

(keeling, 2001) 

Meghan (1998) developed a simple mathematical model for 

number of people infected with an infection disease such as 

chicken pox in a closed population. His study showed that, if 

the parameter governing the spread of the disease is positive, 

the disease will spread throughout the population and 

eradication is not possible. On the other hand, if the parameter 

is negative, the chicken pox dies out in the population. 

Kermack and Mckendrick (1927), Proposed an SIR model to 

explain the rapid rise and fall in number of infected patients 

observed in epidemics such as cholera and Bubonic plague in 

London. They assumed an affixed population size, incubation 

period of the infectious agents is instantaneous and the 

duration of the infectivity is the same as the length of the 

diseases. The research revealed that, an epidemic would occur 

if and only if the initial fraction of the susceptible exceeds the 

reproductive ration (Ro). Looking at the long-term behavior 

of their model, they further predicted the proportions of 

susceptible who would escape the infection. The results 

showed that, if the reproductive ratio Ro is small then more 

people would escape the infection and vice-versa. 

Troy (2005) introduced a mathematical model that describes 

the data of “excess” pneumonia-influenza deaths adopted 

from David and Lang (2001). He assumed that, in a fixed 

homogeneous population the number of excess deaths is 

proportional to the number of incidence of the disease over 

the time. The work showed that, if Ro<1 the disease dies out 

with time. He further discovered that, the epidemic that 

slowly kills people can be far more dangerous to the 

population than the disease that kills people quickly. This 

result is seen in the epidemic such as HIV/AIDS and Bubonic 

plague. According to him, if a disease removes its carriers 

quickly, then the disease is not likely to have a long life span. 

Keeling (2001) estimated the reproductive ratio (Ro) of some 

well-known infectious diseases; malaria Ro≈100, measles 

Ro≈ 18, small pox Ro≈ 4 and AIDS Ro≈5. His research 

showed that, infectious diseases with higher values Ro are 

harder to control than those with lower values of Ro. 

According to him, it is because of this fact that vaccination 

has allowed us to completely eradicate small pox (Ro≈4) and 

it is very hard to control malaria (Ro≈100). Hufnagel, 

Brockmann and Geisel (2003), developed a probabilistic 

model which was based on the mathematical model (SIR) to 

describe worldwide spread infectious disease such as Severe 

Acute Respiratory Syndrome (SARS). 

The model combines a stochastic local infection dynamics 

among individuals with stochastic transport in a worldwide 

network, taking into account national and international civil 

aviation traffic. The model was used to predict the spread of 

SARS for ninety days after the initial outbreak. In Hong Kong 

2003. The results of the simulation were in remarkable 

agreement with the worldwide spread of SARS as reported by 

World Health Organization (WHO). They further suggested 

that based on the results, the model can be used to predict the 

worldwide spread of future infectious diseases and identify 

threatened region in advance. With respect to control, the 

simulation showed that a quick and focused reaction is 

essential to inhibiting the global spread of epidemics. David 

and Lang (2001) developed the mathematical model (SIR) for 

spread of infectious diseases such as Hong Kong flu in New 

York in 2001. The assume the total population to be fixed 

during the flu epidemic by ignoring births, immigrations and 

deaths due to non-flu causes, also assumed a completely 

homogeneous population with no age spatial or social 

structure. They study revealed that, if the contact number of 

the disease is small enough then no epidemic can develop and 

vice-versa. 

 

3.1 The existing model 

The existing SIR model is given as  

 

 
 where 

S (t) = number of susceptible at time t. 

I (t) = number of infected at time t. 

R (t) = number of recovered at time t. 

N (t) = total population at time t. 

g = infectious rate of the disease. 

k = recovery rate of the disease. 

= reproductive ratio of the disease. 

 

The model presented in this work is basically a SIR model. 

This model classifies individuals in a given population into 

susceptible, infective and recovered. However, in this model, 

an individual potentially moves from susceptible pool to the 

infective pool when he/she meets an infected person. For 

instance, the contact for common cold may be walking within 

a few feet of an infected person that has recently coughed. 

Infectious individuals spread the disease to the susceptible 

and remain in the infectious pool for some period of time 

(infectious period), before moving into recovered pool.  

IV. METHODOLOGY 

The mathematical modeling methodology in building the new 

model by modifying the existing SIR model through 

incorporating assumptions that are more realistic. The 

existing SIR model give good analysis epidemic diseases but 

considering more realistic factors to the model will give better 

results. The equilibrium and stability analysis of the model 

will be examined. The eigenvalues of the improved model 

have been analysed. The  numerical scheme of the model will 

be implemented and the corresponding simulation will be 

executed to draw some interpretations.  
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To formulate the model, we consider how those classes 

change over time and consider more assumptions. However, 

when a susceptible individual enters into contact with an 

infectious individual, that susceptible individual becomes 

infected with a certain probability and moves from the 

susceptible class into the infected class. The susceptible 

population decreases in a unit of time by all individuals who 

become infected in that time. At the same time, the class of 

infectives increases by the same number of newly infected 

individuals. The number of individuals who become infected 

per unit of time in epidemiology is called incidence, and the 

rate of change of the susceptible class is given by S (t) = 

−incidence 

 

4.1 Model formulation 

As the first step in modeling process, we identify the 

independent and dependent variables. the independent 

variables is time t, measured in days months or years 

depending on the disease under study and the depend 

variables counts people in each of the groups, each as a 

function of time.  

where; S=S (t), I=I (t), number of infected individuals at time 

t, R=R (t), number of recovered individuals at time t and  N=N 

(t), total population at time t. Each individual in a population 

is in one of the three pools 

Thus S (t) + R (t) = N (t) 

 

4.2 Assumptions of the model 

In addition to the assumptions In David and Lang,  we make 

some assumptions in order to build a more realistic model. 

Basic SIR Models make the following assumptions: 

(i) The rate at which the susceptible become infected is 

proportional to the infective and susceptible i.e 

 is a constant parameter. 

(ii) The rate of recruitment of the infective to the recovered 

pool is proportional to the infective that acquired good 

treatment i.e  is a constant parameter. 

(iii) The population is completely homogenous and the 

incubation period of the disease is instantaneous. 

(iv) We assume that, the common birth rate of the population 

is  and the date rate due to natural causes in the 

population is  

(v) We assume that, all newly born individuals are born into 

the susceptible pool and individuals are equally likely to die 

to natural causes in any of the population pools. 

(vi) We assume that, the infected individuals die at a rate 

 due to the disease. 

The first 3 assumptions are from the existing SIR model 

whereas, the last 2 are the new incorporated realistic 

assumptions 

 

In summary we can conclude that; 

 Individuals are born into the susceptible class. 

 Susceptible individuals have never come into contact with 

the disease and are able to catch the disease, after which they 

move into the infected class. 

 Infected individuals spread the disease to susceptible and 

remain in the infected class (the infected period) before 

moving into the recovered class. 

 Individuals in the recovered class are assumed to be 

immune for life. 

Finally, we make the simplifying assumption that the common 

birth rate and death rate of the population are equal so that, the 

population remains constant. 

 

4.3 Modified Model  

Since epidemiology is the study of the spread of diseases with 

the objective of tracing factors that contribute to their 

occurrence (Jiang D et al, 2011), we introduce more realistic 

assumptions to the existing model given in section (4.1). The 

modified model consists of  a system of three first order 

ordinary differential equations that specify the rate of change 

of three categories of individuals in the population over time 

 S’ = b - (gI(t)+d)S(t)           (4.3.1) 

 I’ = (gS(t) – k – d – q)I(t)          (4.3.2) 

 R’ = kI(t) – dR(t)                      (4.3.3) 

To complete the model, each of the differential equation 

above is given an initial value, that is  

S’ = b - (gI(t)+d)S(t),  S(0) = So                 (4.3.4) 

I’ = (gS(t) – k – d – q)I(t), I(0)= Io     (4.3.5) 

R’ = kI(t) – dR(t), R(0) = Ro                 (4.3.6) 

where b = constant recruitment rate into the susceptible 

population. 

d = natural death rate of the population. 

q = date rate due to disease. 

Ro = reproductive ratio of the disease. 

 
and  

 

4.4 Reproductive ration 

Considering (4.8.5), it follows that 

. However, to eradicate the 

disease in the host population the condition  must 

hold.   

  

Therefore either  

Clearly I < 0 is trivial for epidemic not to occur (eradication). 

Now consider; 

(gS – k – q) < 0 therefore, 1
 qdk

gS
. 

Let  denote the reproductive ratio and So the initial value 

of the susceptible population and define  as 

              (4.4.1) The reproductive ratio is 

the fundamental parameter governing disease dynamics in our 

model. Thus we have the following results. 

(i) Ro < 1 physically interpreted to mean that each person gets 

the disease will infect less than one person before recovering 

or dying, so the disease will peter out and eradication is 

possible  0
dt

dI
  

(ii) Ro > 1 physically interpreted to mean that each person 

who gets the disease will infect more than one person, so the 

epidemic will spread in the host population  
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4.5 Stability analysis of the model. 

To determine the stability points of the modified model, the 

Jacobian matrix of the system is obtained and evaluated at the 

equilibrium points. The eigenvalues of the Jacobian matrix is 

determined and is the stability points of the model. 

 

4.5.1 Asymptotic stability. 

Considering the modified model equations, these equations 

can also be written as; 

 
              (4.5.1) 

                       

where is the incidence rates and are monotonic and concave 

with respect to I to achieve threshold dynamics of epidemic 

models (Ba Y & Mu X, 2018). 

 

4.6 Equilibrium of the model   

To evaluate the equilibrium points of the model, we set the 

RHS of ((4.5.1) to zero.  

 
               

 
Considering , it follows 

that either . However 

if we have , implies that .  

Meanwhile, considering  and putting 

. Similar results for 

 Therefore, the equilibrium points of the model are 

(  which is the Disease Free Equilibrium (DFE).  

 

4.7 The Jacobian matrix  

The Jacobian matrix of the modified model is  

 

Therefore,  

The Jacobean evaluated at the DFE is obtained as  

   

 

4.8 The eigenvalues  

To determine the eigenvalues, we solve the equation 

= 0. Evaluating the equation give the eigenvalues 

as follows 

 and  

Therefore, it can be clearly satisfy the negativity 

requirements for stability because d is a positive parameter. 

On the other hand, for ,  

must be less than zero since  Thus, 

 which give  

 
Therefore, the DFE is locally asymptotically stable, hence the 

disease eradication is possible under these conditions. 

V. NUMERICAL SCHEME FOR THE MODEL EQUATIONS 

Now considering the system of first order ordinary 

     

 
      (5.1.1) 

 
 Differential equations that arise from the formulation of our 

model can be written as:  

 

 
                             (5.1.2) 

Using Euler's formula, we can write the system of equations as 

 

 
                   (5.1.3) 

From  (5.1.2) we have  

 

 
                                       (5.1.4) 

 
Therefore, substituting we obtain 

 

 
     (5.1.5) 

 

VI.  COMPUTER SIMULATION  

The numerical scheme developed in section 5.0 above is 

simulated using Visual Basic (VB).  

We have simulated both the existing model by David and 

Lang as well as our modified model. We have selected some 

initial values for the numerical experiments and obtained the 

results. However, the experiments are carried out in four 

stages as follows 

 

i. We examine the dynamics of infectious disease under high 

transmission rate and high recovery rate. 

ii. We examine the dynamics of the infectious disease under 

low transmission rate with high recovery rate. 

iii. We study the dynamics of the infectious disease under 

high transmission rate and zero recovery rate. 

iv. We examine what will happen to the host  population, if 

there is no infection 

 

6.1 Discussion of results  

The discussions of the results for the four stages of the 

excitements are given as  

i. Under high transmission rate and high recovery rate, the 

results of the model by David and Lang (2001) is displayed in 

figure 1(b).  
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Figure 1(a) and (b): Dynamics of diseases under high 

transmission rate and high recovery rate 

 

There is a decrease in proportions of the infected individuals 

due to good treatment (high recovery rate)as indicated on 

Figure 1 above. On the other hand, the results of the modified 

model is presented in figure l(a) and it shows a faster decrease 

in the proportions of the infected individuals than the previous 

model. Therefore, the modified model shows faster decrease 

in infected population  and this is due to the inclusion of new 

assumptions to the existing model. Moreover, this result 

agrees with the results of our reproductive ratio (Ro) in section 

(4.4). In this experiment Ro ≈ 0.6 which is less than 1.   

 

ii. Under low transmission rate with high recovery rate, the 

results shows that under high recovery rate (good treatment 

given to the infected), it  takes longer period of time to 

eradicate the infection in the previous than the modified 

model. Thus, the modified model shows that the infection can 

be eradicated faster than the previous model as shown in 

Figure 2(a)) and agrees with reproductive ration (Ro ≈ 0.12) 

 

 
Figure 2 (a) and (b): Dynamics of the infectious disease under 

low transmission rate with high recovery rate. 

iii. The infectious disease under high transmission rate and 

zero recovery rate shows that the model by David and Lang 

reveals high rise in proportions of the infected individuals due 

to absence of treatment given to infected individuals.  This 

leads to the extinction in proportions of the susceptible 

individuals as shown in Figure 3b. This is a clear indication 

that the existing model can only be used to describe spread of 

those diseases that persist for short period (i.e. epidemic) and 

does not account for recruitment rate into the susceptible 

pool. Whereas the results of the modified version clearly 

describe the dynamics of the infection that persists through 

the periods (i.e. become endemic). Here there is no extinction 

of the susceptible individuals since the recruitment rate into 

the susceptible pool has been considered. Therefore, the 

modified version of the model can be  

used to describe dynamics of both epidemic and endemic 

diseases.The persistence of the infection agrees with results of 

the reproductive ratio (Ro ≈ 2.7) as shown on the result. .e. 

Ro> 1). 

Figure 3 (a) and (b): The infectious disease under high 

transmission rate and zero recovery rate 

 

iv. Without infection the host population would remain 

uninfected. However, this is naturally and obviously expected 

since both of the models do not account for migration.  

VII. CONCLUSION  

The modified version of mathematical model proposed and 

studied in this paper been proved more practical than that by 

David and Lang, as it gives a better insight into the dynamics 

of infectious diseases and consequently enhances struggle 

against the spread of those diseases.  However, it also 

revealed some remarkable result. Under high transmission 

rate disease spread in the host population but with massive 

effective treatment given to the infected individuals, the 

improved model shows a drastic reduction of length of time 

taken to achieve eradication. The modified version of the 

model can be used to study and describe both epidemic and 

endemic diseases unlike the model by David and Lang which 

can only study the spread of those diseases that persist for 
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short period of time i.e. epidemic.  This study also proved 

beyond doubt that, under low transmission rate infection 

spread less, therefore good medical care and effective 

treatment to the infected individuals dramatically lower the 

transmission rate and hence making eradication possible in 

finite time.   

Based on the findings in this work, we recommend the 

modified version of the model for use by the epidemiologists 

as an appropriate tool in understanding how infectious 

diseases spreads, assessing the risks and evolving optimal 

control strategy. Finally, we recommend that quarantining the 

sick people would serve as a preventive measure towards 

inhibiting disease transmission and possibly lead to 

eradication. 
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